proudly powered by 3dfxzone.it
NewsHeadlinesArticoliFilesRicerca

Release Notes - NVIDIA CUDA Toolkit 3.1

Condividi su Facebook Condividi su Twitter Condividi su WhatsApp Condividi su reddit

Di seguito sono consultabili le note di rilascio - in gergo "release notes" - relative al file NVIDIA CUDA Toolkit 3.1, nel caso in cui gli sviluppatori abbiano reso disponibile tale documentazione in occasione della pubblicazione del software. Tuttavia, se hai bisogno di maggiori informazioni su NVIDIA CUDA Toolkit 3.1, o se le note di rilascio non sono (ancora) disponibili, è comunque possibile procedere con la lettura della descrizione del file.

NVIDIA CUDA Toolkit 3.1

The CUDA Toolkit 3.1 packs the following updates and additions:

 - GPUDirect gives 3rd party devices direct access to CUDA Memory

 - Support for 16-way concurrency allows up to 16 different kernels to run at the same time on Fermi architecture GPUs

 - Runtime / Driver interoperability enables applications to mix-n-match use of the CUDA Driver API with CUDA C Runtime and math libraries via buffer sharing and context migration

 - New language features added to CUDA C / C++:

Support for printf() in device code

Support for function pointers and recursion make it easier to port many existing algorithms to Fermi GPUs

 - Unified Visual Profiler now supports both CUDA C/C++ and OpenCL, and now includes support for CUDA Driver API tracing

 - Math Libraries Performance Improvements, including:

Improved performance of selected transcendental functions from the log, pow, erf, and gamma families

Significant improvements in double-precision FFT performance on Fermi-architecture GPUs for 2^n transform sizes

Streaming API now supported in CUBLAS for overlapping copy and compute operations

CUFFT Real-to-complex (R2C) and complex-to-real (C2R) optimizations for 2^n data sizes

Improved performance for GEMV and SYMV subroutines in CUBLAS

Optimized double-precision implementations of divide and reciprocal routines for the Fermi architecture

 - New and updated SDK code samples demonstrating how to use:

Function pointers in CUDA C/C++ kernels

OpenCL / Direct3D buffer sharing

Hidden Markov Model in OpenCL

Microsoft Excel GPGPU example showing how to run an Excel function on the GPU


Descrizione Download

Dimensione: N/A Annuncio

Tipo: Applicazione Altre Applicazioni


Versione per desktop di HWSetup.it


Copyright 2024 - Hardware Setup - HWSetup.it - E' vietata la riproduzione del contenuto informativo e grafico. Note Legali. Privacy